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Ten numerical schemes to reduce spurious oscillations in transport simulations
were implemented and tested in a Eulerian–Lagrangian control-volume finite element
model. The schemes included both new and existing flux-corrected transport (FCT)
algorithms and nonlinear filters. The ability of the methods to eliminate numerical
oscillations while preserving mass and minimizing the introduction of numerical
diffusion was compared in 2D tests of varying complexity. The application of local
mass correction algorithms was shown to be vital to avoid the introduction of mass
errors by FCT. While none of the methods emerged as optimal for all cases, a new
FCT method with a local mass correction scheme and a nonlinear filter can be
recommended as the best approaches in general. The method of choice depends on
the problem being solved, in particular on the concentration gradients and on the grid
resolution. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The numerical solution of advective-dominated transport has long faced the dilemma
between spurious oscillations and numerical damping. Typically, high-order methods tar-
get the preservation of peak concentrations and sharp gradients but suffer from numerical
oscillations. In contrast, low-order methods (e.g., first-order upwind methods) offer posi-
tivity at the expense of numerical damping.

Clearly, many problems exist in which both positivity and peak preservation are required.
For instance, numerical oscillations in a water-quality transport model can lead to negative
concentrations, hence to unrealistic behaviors. Simultaneously, numerical damping can be
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a serious flaw if there are threshold concentration limits that should not be reached (e.g.,
due to environmental regulations).

While oscillations indicate the need for additional refinement [1], this refinement may
be prevented by the associated computational costs. Adaptive methods (e.g., [2–4]) are a
possible alternative. However, their application in complex multidimensional systems may
be hampered by the increase in computational costs and the need for consistent interpolation
of variables between grids.

Several solutions have been proposed to mitigate or eliminate spurious oscillations with
minimal introduction of numerical damping. Among these, flux-corrected transport methods
(FCT) [5], the localized use of a low-order method [6], and the use of nonlinear filters
[7] focus on the local elimination of the oscillations, to preserve the overall accuracy.
A comparison of nonlinear filters and the localized use of a low-order method showed
that the former are superior to the latter in both oscillation removal and mass conserva-
tion [8].

This paper presents a detailed comparison of nonlinear filters and FCT methods in two-
dimensional unstructured grids. Within the FCT concept, we compare previously proposed
formulations [5, 9] and propose new formulations that improve both mass conservation
and accuracy. A new formulation that combines FCT with nonlinear filter concepts is also
proposed and analyzed.

The analysis is conducted in the framework of finite-element-based Eulerian–Lagrangian
methods [10]. These methods are very attractive for advection-dominated transport mod-
eling, since they allow Courant numbers larger than 1 while retaining the convenience
of a fixed computational grid. Typically, advection is solved by the backward method of
characteristics, while diffusion is solved by finite elements, finite differences, or finite vol-
umes. In the past decade, these methods have been substantially improved to enhance mass
conservation [11–13], which was their major limitation.

The filter and FCT formulations were implemented in a control-volume finite-element-
based Eulerian–Lagrangian model (VELA [14]). This model, which combines some of the
most advanced approaches for transport modeling using ELMs, compared favorably with
several finite element models [15], ranking therefore among the most accurate transport
formulations available. For the purpose of this work, though, the choice of the specific
model used to implement the oscillation-removal schemes is not very relevant. This model
was selected for its high accuracy and, therefore, potential for the generation of important
oscillations.

The comparison was conducted for several tests, including benchmark tests from the
Convection–Diffusion Forum [16] and a real estuary (Tagus estuary, Portugal). Plume and
flow conditions range from simple to very complex. The methods were compared based on
a suite of error measures traditionally used for transport models [15, 16].

This paper is divided into five sections and one appendix, besides this introduction.
Section 2 reviews and discusses the two classes of methods under comparison: FCTs and
nonlinear filters. Section 3 describes the formulation of the base model, the details of the
implementation of each method within the base model, and the two algorithms for mass
conservation in FCTs. Section 4 describes the tests selected for the comparison. In Section 5,
the various methods are compared on a property-by-property basis to foster the identification
of their relative merits. Finally, Section 6 summarizes the findings of this research. The error
measures are given in the Appendix.
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2. BACKGROUND

2.1. Flux-Corrected Methods

Flux-corrected transport algorithms (FCTs) have been used extensively for over two
decades to eliminate oscillations in finite difference schemes (e.g., [17–20]). Lohner et al. [5]
adapted FCTs to finite elements, for multiple dimensional problems. Bermejo and Staniforth
[21] implemented FCT concepts in a Eulerian–Lagrangian framework.

The basic concept of FCTs is to generate a positive, high-accuracy solution through a
combination of high- and low-order methods. The high- and low-order methods may have
distinct formulations [18] or the low-order method can be obtained by adding diffusion to the
high-order solution [5]. The FCT solution, ccorr, can be generically obtained at each node as

ccorr
i = �i c

H
i + (1 − �i )c

L
i , (1)

where cH
i and cL

i are the concentrations computed with the high- and the low-order methods
at node i , respectively, and �i ∈ [0, 1] is a weighting factor. Following a widely used approach
in FCTs, the corrected concentration can be further restricted to the interval defined by the
minimum and maximum concentrations in the elements that contain node i in the previous
time step [5]. For ELM models, the limiting concentrations are the minimum and maximum
concentrations at the element that contains the foot of the characteristic line of node i [9].

The use of a single value of � in the whole domain preserves mass, provided that both cH

and cL are mass conservative. However, this approach will either lead to excessive diffusion
or fail to eliminate the oscillations. The optimization of � at each node avoids these problems
[22] but can potentially introduce mass errors [9]. A posteriori mass correction algorithms
thus become necessary. Priestley [9] proposed an algorithm for global mass conservation
by modifying the values of � in a global sense. However, since the introduction of mass
errors in the flux-correction procedure is local, a local mass correction algorithm appears
to be more appropriate. A local mass correction algorithm is proposed in Section 3.

The main characteristic of FCT methods is the strict elimination of unphysical values.
However, these methods require the computation of two numerical solutions at each time step
(a “high-order” and a “low-order” solution), which may lead to substantial computational
costs. Using a lumped mass matrix formulation as the positive, low-order method makes
the computational cost associated with this method negligible.

Including source and sink terms or reactions, which are present for instance in geochem-
ical models (e.g., [23]), may be difficult within the original FCT formulations. The lowest
and highest concentrations allowed at each node in the new time step are limited by the min-
imum and maximum concentrations at the previous time step for the element that contains
the foot of the characteristic line of that node. If there are mechanisms adding or removing
mass from the system (sources or sinks) or transferring mass from one chemical constituent
to another, the FCT limiting concepts are difficult, if not impossible, to implement. The
modification proposed in Section 3 avoids this limitation by using user-specified bounds,
related to the specific problem to be addressed.

2.2. Nonlinear Filters

Filters have been extensively used to remove noise and unphysical values, in particular in
the analysis of field data time series [24]. Within the scope of the simulation of the transport
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equation, the concept of nonlinear filtering for the removal of oscillations was proposed
by Mahlman and Sinclair [25]. In spite of the promising results, this type of method has
attracted little attention.

Within the context of structured grids, the nonlinear filter proposed by Engquist et al.
[7] provided excellent results for 1D and 2D simulations [26, 27]. The basic concept of
this filter is to eliminate local extrema by correcting the concentration at the corresponding
node and at an adjacent node by the same amount.

Fortunato and Oliveira [28] extended this method to two-dimensional unstructured grids
to filter bathymetric oscillations. This filter was further modified by Oliveira and Fortunato
[8] to preserve local and global mass in depth-averaged transport simulations. The filter
eliminates local extrema in the concentration field by equalizing the peak concentration and
the concentration at the adjacent node that leads to the largest concentration difference. The
concentration at both nodes is calculated by avoiding mass changes relative to the unfiltered
solution.

Since excessive damping is a drawback often associated with the use of filters, Oliveira
and Fortunato [8] proposed and explored local implementations of the 2D nonlinear filter.
Given user-specified bounds on the concentration field, the filter is only applied at the nodes
where these bounds are exceeded. An example is the propagation of salinity in an estuary,
where the concentration cannot be negative or larger than the salinity at the ocean boundary,
at least in the absence of evaporation. The concept of bounding the concentrations based on
the problem at hand will be further explored in the following sections, for both nonlinear
filters and FCT methods.

The nonlinear filter compared favorably with an implementation of the local use of a low-
order method, providing both less damping and better mass conservation [8]. Therefore,
the localized use of low-order methods was omitted in the present analysis. The filter also
proved highly superior to increasing the diffusion coefficient [8].

Numerical filters have some advantages relative to other methods for the elimination of
oscillations. Since they are applied a posteriori, they can be implemented in any model
without any restriction on the formulation or on the problem at hand. Sources, sinks, and
reactions are easily handled, and the filter does not need to be adapted for each specific
problem. Filters are also computationally inexpensive, as they can be applied with large
time steps, and only when oscillations exist. Finally, their judicious, localized application
may limit the introduction of numerical diffusion.

3. DESCRIPTION OF THE NUMERICAL SCHEMES

This section presents the 11 numerical schemes used in the paper, including the base model
and the 10 formulations for oscillation reduction. These 10 formulations have different
approaches regarding the basic concept behind them (FCT, nonlinear filter, or a combination
of the two), definition of FCT limiting bounds, existence and type of mass correction
scheme for FCTs, and a posteriori oscillation removal for filters. The acronyms and general
properties of these schemes are summarized in Table I.

3.1. Base Model—VELA

The base model (BM) used in this study, VELA, is a Eulerian–Lagrangian model, which
combines finite volumes and finite elements with a high-accuracy integration based on
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TABLE I

Definition of Formulations

Acronym Filter Flux corrected Mass correction

BM No No No
BM-F Yes No Yes
BM-F-C Yes (with clipping) No Yes
OFC No Yes (original) No
MFC No Yes (modified) No
GM-OFC No Yes (original) Yes (global)
LM-OFC No Yes (original) Yes (local)
GM-MFC No Yes (modified) Yes (global)
LM-MFC No Yes (modified) Yes (local)
GM-MFC-F Yes Yes (modified) Yes (global)
LM-MFC-F Yes Yes (modified) Yes (local)

subdivision quadrature [14]. The use of finite volumes for integration of the transport
equation avoids local and global mass errors so often associated with ELMs [30], while
the use of finite elements for domain and variable definition allows for flexible domain
discretization and high accuracy. The use of integration techniques for the evaluation of the
integrals at the feet of the characteristic lines was shown to be superior to the traditional
interpolation methods [31].

As in all ELMs, the transport equation in VELA is split into two simpler equations,
solved sequentially: advection is solved by the backward method of characteristics using an
adaptive, embedded fourth-order Runge–Kutta method [29], while diffusion is solved using
node-centered control-volume concepts. Linear finite elements are used both in geometry
representation and in variable definition. Integration in time is performed with an �-method;
i.e.,

∫

�n+1
cv

cn+1 d�n+1
cv − ��t

H̄ n+1

∫
S

(
DH

∂c

∂xk

)
�k
∣∣∣∣
n+1

d Sn+1

−
∫

�n
cv

c� d�n
cv − (1 − �)�t

H̄ �

∫
S

(
DH

∂c

∂xk

)
�k
∣∣∣∣
�

d Sn = 0, (2)

where � denotes the feet of the characteristic lines at instant n, D is the diffusion coefficient,
�t is the time step between time instants n and n + 1, �n

cv and �n+1
cv are the surfaces of

the control volume at instants n and n + 1, H̄ is the average depth in the control volume
at each time instant, Sn and Sn+1 are the boundaries of �n

cv and �n+1
cv , respectively, �k is the

outward unit normal on S, and � is the time discretization weight.
The evaluation of the integrals is performed after defining the control volume limited

by the characteristic lines of the corners of the Voronoi polygon of each node (Fig. 1a).
The area integrals at time n + 1 are evaluated analytically in each quadrangle. The area
integrals at the feet of the characteristic lines are evaluated by subdivision quadrature [14,
30]: each triangle formed by the foot of the nodal characteristic line and two sequential
corners of the tracked image of the Voronoi polygon is divided into a user-specified number
of subtriangles (Fig. 1b). Concentrations and depths are interpolated at each subtriangle
corner and then assumed linear within each subtriangle.
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FIG. 1. (a) Definition of the control volume along the characteristic lines, between time steps n + 1 and n.
(b) Region of integration at the feet of the characteristic lines, defined by the feet of the characteristic lines of the
node and the corners of the Voronoi polygon. Definition of the integration triangles and their subdivision into a
user-specified number of subtriangles.

3.2. Nonlinear Filter

The nonlinear filter formulation (BM-F) first computes an initial solution at the new time
step using the BM. Local extrema in the concentration field are then eliminated, while mass
is preserved locally. The algorithm can be summarized as follows.
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1. Identification of the local extrema. A minimum occurs for ci < cmin, where cmin =
min{c j : j = 1, NEI}, and a maximum occurs for ci > cmax, where cmax = max{c j : j =
1, NEI}. NEI is the number of nodes sharing an element with node i .

2. Identification of the neighboring node m to be used in the filtering procedure, for each
extremum. For a local minimum, the node with cmax is used, while for a local maximum the
node with cmin is used.

3. Adjustment of the concentrations at nodes i and m. These concentrations are set to
be equal and mass changes in the set of elements that contain any of the two nodes are
prevented; i.e.,

�M =
∫
A

H (c − c f ) d A = 0 (3)

where H is the total depth and the superscript f indicates a filtered value. The integration is
performed over the elements containing any of the two nodes whose concentration is being
adjusted (Fig. 2). Note that except for nodes i and m, the concentration is unchanged, which
simplifies considerably the solution of (3).

For linear triangular elements, Eq. (3) becomes

c f
i = c f

m =
(

− B2

B1
cm − ci

)/(
− B2

B1
− 1

)
,

B1 = 2Hi

n el i∑
k=1

Ak +
n nd i∑

k=1

Hk

n el k i∑
j

A j , (4)

B2 = 2Hm

n el m∑
k=1

Ak +
n nd m∑

k=1

Hk

n el k m∑
j

A j ,

where cm and c f
m are the concentrations at node m before and after the filter, ci and c f

i

are the concentrations at node i before and after the filter, H is the nodal depth, A is the
elemental area, n el i and n el m are the number of elements around nodes i and m, n nd i
and n nd m are the number of nodes around nodes i and m, and n el k i and n el k m are
number of elements that share nodes i and k and nodes m and k.

4. Steps 1 to 3 are repeated iteratively, at each time step, until all local extrema have
been eliminated.

The application of the filter can be limited to nodal concentrations that exceed user-
specified bounds. Often, the concentration is physically bounded by the conditions of the
problem. For instance, salinity in an estuary should not be negative or exceed the ocean
value used as a boundary condition (if the model is not considering evaporation). In this
case, it is reasonable to limit the application of the filter to areas where a user-specified
bound is being exceeded.

Although the application of the filter drastically reduces numerical oscillations, it may
not fully eliminate them. Therefore, a clipping procedure was implemented, in which any
nodal concentration that exceeds the user-specified bounds is set equal to these bounds.
This procedure is denoted BM-F-C.
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FIG. 2. Nonlinear filter: example of nodal selection and nodal movement.

3.3. Flux-Corrected Schemes

All flux-corrected transport schemes used in this paper are based on the generic definition
(Eq. (1)). The low-order method is based on the BM, using a lumped mass matrix. This
method is unconditionally positive while being less diffusive than other lumping schemes,
as a result of the high-accuracy integration of the forcing vector. For the two methods
described in this subsection, the original flux-corrected method (OFC) and the modified
flux-corrected method (MFC), the BM is used in Eq. (1) as the high-order method.

In OFC, as in traditional FCT methods, the weighting factor, �i , is defined as the largest
possible value at each node, given the restrictions

1. min (cH
i , cL

i ) < ccorr
i < max(cH

i , cL
i ), i.e. �i ∈ [0, 1],

2. min(c�
i ) < ccorr

i < max(c�
i ),

where min(c�
i ), max(c�

i ) are the minimum and maximum concentrations in the element
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that contains the foot of the characteristic line of node i at time n. The second restriction
prevents the generation of new extrema in the concentration field, by limiting the corrected
concentration to the range of values in the element that contains the foot of the characteristic
line. However, this condition also limits the ability of the model to adapt to different grid
refinements through mass redistribution. For complex models, involving sources, sinks, and
reactions, the application of the second condition may be difficult, if not impossible.

These limitations motivated the development of a modified flux-corrected scheme (MFC).
Rather than limiting the concentrations based on values in the previous time step, the MFC
uses the concept of user-specified, problem-dependent, bounding limits: cupper, clower. These
limits can vary both in space and in time, depending on the specific problem. In this paper, the
lower and upper bounds, when applicable, were specified as time- and space-independent
values. The definition of the weighting factor for the MFC must thus obey the following
restrictions:

1. min (cH
i , cL

i ) < ccorr
i < max(cH

i , cL
i ), i.e. �i ∈ [0, 1].

2. clower < ccorr
i < cupper.

3.4. Mass Correction Algorithms for Flux-Corrected Schemes

The application of the FCT concepts, either as OFC or MFC, does not take into account
the impact on mass conservation of the combination of the low- and high-order schemes
through the weighting factor. In the framework of Eulerian–Lagrangian methods, Priestley
[9] proposed a mass correction scheme that targets global mass conservation. The general
concept of this scheme is to iteratively modify the weight of the high- and low-order solutions
at each node by searching for the largest possible weights for the high-order method that
maintain positivity and minimize global mass conservation errors.

This algorithm was adapted here for application to the control-volume finite element
ELM concepts used in the BM. The algorithm used herein has the following steps.

1. Compute the integrated difference between high- and low-order solutions for each
node, �i , using the set of elements that contain node i ; i.e.,

�i =
∫

(cH − cL )H d�i , (5)

where H is the total depth.
2. Compute c∗; i.e.,

c∗ =
n nodes∑

i=1

�i�i , (6)

where n nodes is the total number of nodes in the domain and �i are the weighting factors
used in Eq. (1).

3. Targeting the mass conservation of the high-order solution, check whether the sign of
c∗ is correct:

if c∗ >

∫
cH Hd� −

∫
cL Hd�, then c∗ =

∫
cH Hd� −

∫
cL Hd�;

otherwise c∗ =
∫

cL Hd� −
∫

cH Hd�.

(7)
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4. Compute the indicator iflag and the initial estimates for the weighting factor �∗:

if �i < 0

{
iflagi = 1,

�∗
i = �i ;

if �i >= 0

{
iflagi = 0,

�∗
i = 0.

(8)

5. Define average weighting factor, �av:

�av = c∗ − ∑n nodes
i=1 �∗

i �i iflagi∑n nodes
i=1 �i (1 − iflagi )

. (9)

6. If the best mass conservation was achieved, update the values of the weighting factor
and recalculate the concentration:

if �av ≤ �i , for all iflagi = 0 ⇒ �i = �av, for all iflagi = 0. (10)

Then recalculate the concentration based on the new weighting factors and stop the mass
correction procedure.

7. If the best mass conservation was not achieved, update values of weighting factor:

if iflagi = 0 and �av > �i ⇒ �∗
i = �i ;

(11)
if iflagi = 0 and �av ≤ �i ⇒ �∗

i = �av.

8. Return to step 5 until convergence is reached.

The application of this procedure to the OFC and to the MFC generates the global mass cor-
rection original flux-corrected scheme (GM-OFC) and the global mass correction modified
flux-corrected scheme (GM-MFC).

Since oscillations are generated in specific regions of the domain, we propose a new
localized mass correction procedure. This algorithm first identifies the nodes where the
high-order solution was replaced by a corrected concentration and uses one of the adjacent
nodes to compensate for the mass imbalance introduced by the FCT. This algorithm is based
on the same concepts applied for the mass conservation of the nonlinear filter.

For each node i where the high-order solution was not used, do the following.

1. Within the adjacent nodes (nodes that share one element with node i), find the min-
imum and maximum concentrations (cmin, cmax) and the difference between these concen-
trations and ccorr

i :

dmin = abs
(
ccorr

i − cmin
)
,

dmax = abs
(
ccorr

i − cmax
)
.

(12)

2. Note that the node selected for the mass correction is the one that leads to the largest
concentration difference (node m).
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3. Correct the concentration at node m to maintain the mass of the high-order solution
within the set of elements shared by node i and node m; i.e.,

�M =
∫
A

H (cH − ccorr) d A = 0, (13)

where H is the total depth and the superscript corr indicates a corrected value.
The integration is performed over the elements containing any of the two nodes whose

concentration is being adjusted. Equation (14) leads to

cm corr
m = cm + B1

B2

(
cH

i − ccorr
i

)
,

B1 = 2Hi

n el i∑
k=1

Ak +
n nd i∑

k=1

Hk

n el k i∑
j

A j , (14)

B2 = 2Hm

n el m∑
k=1

Ak +
n nd m∑

k=1

Hk

n el k m∑
j

A j ,

where cm and cm corr
m are the concentrations at node m before and after the mass correction,

respectively, cH
i and ccorr

i are the concentrations at node i for the high-order solution and
after applying the FCT, H is the nodal depth, A is the elemental area, n el i and n el m are
the number of elements around nodes i and m, and n nd i and n nd m are the number of
nodes around nodes i and m, n el k i and n el k m are the number of elements that share
nodes i and k and nodes m and k, respectively.

Application of the above algorithm to OFC and MFC generates the local mass correction
FCTs (LM-OFC and LM-MFC). The concentration at the adjacent node m is also limited
by the upper and lower bounds on the LM-MFC and by the concentrations at the element
that contains the foot of the characteristic line of node m on the LM-OFC.

3.5. Combination of Nonlinear Filter and Mass-Corrected Flux-Transport Schemes

Two additional formulations are proposed based on a combination of the nonlinear filter
and modified FCT concepts (GM-MFC-F and LM-MFC-F). The rationale behind these new
formulations is the choice of a high-accuracy method where oscillations were already almost
eliminated as the high-order method in a FCT general framework. These formulations are
implemented by using the nonlinear filtered solution (BM-F) as the high-order method in
the modified flux-corrected method, applying either a global mass correction (GM-MFC-F)
or a local mass correction (LM-MFC-F).

4. EXPERIMENTAL SETUP

This section presents the four tests chosen for the comparison, which include both bench-
mark tests (rotating Gauss, rotating cylinder, and convection of concentration hills within
closed streamlines) and the transport of a Gauss plume in the Tagus estuary forced by the
results of a shallow-water model (ADCIRC [32]).

Plume conditions (Fig. 3) include smooth concentration gradients in the Gauss plume tests
(rotating Gauss test and Tagus estuary) and sharp concentration gradients in the rotating
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FIG. 3. Initial conditions: (a) rotating Gauss; (b) rotating cylinder; (c) CDF5; (d) Gauss in the Tagus estuary.

cylinder test and in the convection of concentration hills within closed streamlines test
(Convection–Diffusion Forum test 5 (CDF5)).

Initial conditions for the rotating Gauss test and Gauss plume in the Tagus estuary are
defined as

C0 = exp

(
(x − x0)2

2�2
0

+ (y − y0)2

2�2
0

)
, (15)

where x and y are the space coordinates, (x0, y0) is the initial location of the plume center,
and �0 is the standard deviation of the initial Gauss hill.

For the CDF5 test, the initial concentrations are given by

C0 =



1 −
√

(x−x0)2

r2
0

+ (x−x0)2

r2
0

, if (x − x0)2 + (y − y0)2 ≤ r2
0 ,

0, otherwise,
(16)

where r0 is the cone base radius.
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Finally, the initial conditions for the rotating cylinder are defined as

C0 =
{

1, if (x − x0)2 + (y − y0)2 ≤ r2
0 ,

0, otherwise,
(17)

where r0 is the cylinder base radius.
Forcing flow fields, which have an important impact on oscillation generation, range from

simple in the rotating Gauss and rotating cylinder tests, to very complex in CDF5 and the
Tagus estuary tests (Fig. 4). Indeed, the Gauss plume of the Tagus estuary test is forced by
a fully nonlinear flow simulation. This simulation was conducted using the depth-averaged
shallow-water model ADCIRC [32], forced by the main tidal constituent (M2) and its major
harmonics (M4, M6, and Z0) at the ocean boundary, and by a constant river flow at the
upstream boundary. This flow field is strongly space and time dependent (Fig. 4), due to
the oscillatory nature of the ocean boundary forcing and the bathymetry and geometry of the
Tagus. Further details of the tidal simulations for the full set of tidal constituents are given
in Fortunato et al. [33, 34]. To avoid the propagation of flow mass errors to the transport
simulations [13], the flow grid was obtained by refining the transport grid (Fig. 3) through
division of all elements by 16.

For the rotating Gauss and rotating cylinder tests, the flow field is stationary and defined
as

u = −�y,

v = �x,
(18)

where � is the angular velocity, taken as 2.09 × 10−3 s−1.
For the CDF5, the flow field is also stationary:

u = 0.32� sin(4�x) sin(4�y),

v = 0.32� cos(4�x) cos(4�y).
(19)

For the rotating plume tests, the time step and the number of time steps were selected to
simulate a 360◦ rotation of the plumes. Additional details of all simulations are presented
in Table II.

TABLE II

Test Parameters

Test Rotating Gauss Rotating cylinder CDF5 Tagus estuary

Time step (s) 50 150 6 3600
Number of time steps 60 20 15 72
Standard deviation of Gauss 200 200 1500 1000

plume/base radius (m)
Lower concentration bound 0 0 0 0
Upper concentration bound — 1 — —
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FIG. 4. Snapshots of the forcing flow field for the Tagus estuary test (velocities were interpolated into the
transport grid for clarity): (a) ebb; (b) low-water tide; (c) flood; (d) high-water tide.
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TABLE III

Measures of Numerical Oscillations

Maximum negative Maximum volume of negative
concentration (−) concentration (m3)

Test BM BM-F BM BM-F

Rotating Gauss −1.0 × 10−2 −4.1 × 10−10 −5.7 × 103 −6.4 × 10−5

Rotating cylinder −2.1 × 10−1 −5.1 × 10−7 −1.6 × 105 −4.3 × 10−3

CDF5 −2.1 × 10−1 −1.8 × 10−5 −1.3 × 105 −5 × 10−1

Tagus test −1.0 × 10−1 −9.6 × 10−8 −1.5 × 106 −6.0 × 10−2

5. RESULTS AND DISCUSSION

In this section, the 11 formulations are compared, based on the results from the tests
described above. Since none of the methods emerged as optimal for all tests and all numerical
properties, this comparison is made on a property-by-property basis, in order to identify the
relative merits of each formulation.

5.1. Numerical Oscillations

The base model (BM) confirms its excellent results on all tests for all properties but
numerical oscillations (Table III). The BM leads to considerable negative concentrations in
particular for the tests with strong gradients (cylinder test and CDF5 tests, Fig. 3). In the
presence of complex flow fields (Tagus and CDF5 tests), the BM also presents important
oscillations, which can reach 10% of the peak concentrations (Tagus test). The volume of
negative concentration (a measure of the “negative,” unphysical mass) is also very large
(Table III). The use of this otherwise very accurate method in real problems, involving
simple transport or complex water-quality models, is thus limited by the large oscillations.
Schemes that reduce or eliminate the oscillations are thus necessary.

All FCT-based formulations fully eliminate the oscillations that lead to negative concen-
trations or to concentrations above the cylinder top (Fig. 5). The nonlinear filter (BM-F)
reduces the maximum negative concentrations by several orders of magnitude, leading to
negligible negative concentrations in all tests (Table III). The oscillations that lead to concen-
trations above the cylinder top are fully eliminated. The volume of negative concentrations
is also drastically reduced, between five and ten orders of magnitude (Table III).

In the CDF5, the performance of the nonlinear filter is worse than in the other tests. Due
to the growth of concentration gradients in time, which increases the potential for oscillation
generation (Fig. 5c), the nonlinear filter is less effective at removing the oscillations, leading
to residual oscillations larger than in the other tests. These residual oscillations (O(10−5)),
however, are still negligible (Table III).

Simple clipping of the values outside the bounds after the filter application (BM-F-C)
can fully eliminate the remaining oscillations. However, this clipping can have a significant
impact on mass conservation, as discussed below.

5.2. Mass Conservation

The base model preserves mass well in all tests. Mass conservation is only limited by the
number of subdivisions used in the evaluation of the integrals at the feet of the characteristic
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FIG. 5. Maximum negative concentrations for the base model: (a) rotating Gauss; (b) rotating cylinder;
(c) CDF5; (d) Gauss in the Tagus estuary.

lines, and also by the flow mass balance in the Tagus estuary test [13]. Maximum relative
mass errors vary between 8.0 × 10−5 and 1.6 × 10−2.

All formulations for oscillation removal have an impact on mass conservation (Fig. 6).
Both original and modified flux-corrected formulations (OFC and MFC) exhibit large mass
errors because they change the concentration field without enforcing mass balance. The
OFC has the largest errors in all tests, with relative errors up to 36% in the Tagus estuary.
The modified formulation, MFC, reduces these errors consistently. Since limits on maxi-
mum nodal concentration are not imposed, the concentration field is able to adapt to the
local refinement. Yet, mass errors remain large, since the major source of mass errors—the
removal of the oscillations—was not compensated for in any way. The mass errors intro-
duced by the flux-correction procedure (differences between errors for FCT methods and
BM) are much larger for the tests with sharper concentration gradients, up to three orders of
magnitude, than for the Gauss plume tests (rotating Gauss and Tagus estuary). This behavior
was expected, as oscillations are generated in the presence of strong gradients.

The application of local or global conservation schemes on the OFC and MFC formu-
lations are fundamental for acceptable mass conservation. For the rotating Gauss test, all
formulations with mass correction procedures give similar mass errors (Fig. 6). This test
has smooth concentration gradients and a simple flow field, so mass conservation does not
limit the choice of the method for the oscillation removal. For the other tests, the local mass
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FIG. 6. Maximum relative mass errors: (a) rotating Gauss; (b) rotating cylinder; (c) CDF5; (d) Gauss in the
Tagus estuary.

correction scheme leads to smaller mass errors than does the global mass correction scheme
(up to one order of magnitude), both within the OFC and MFC.

The nonlinear filter (BM-F) generally leads to mass errors very similar to those of the base
model. This behavior results from the mass correction procedure within this formulation
that targets the mass of the base model locally.

The clipping of the oscillations after the application of the nonlinear filter (BM-F-C) has
minor impact on mass conservation for the smoother concentration gradient tests (rotating
Gauss and Gauss in the Tagus). However, for both the CDF5 and the rotating cylinder tests,
clipping oscillations increases the maximum mass errors by an order of magnitude, due to
the magnitude of the residual oscillations. This approach should thus be used with caution,
guided by the specific problem to be solved.

Mass errors for the nonlinear filter without clipping are generally smaller than for the
FCT methods using the BM as the high-order solution. These results motivated the de-
velopment of the formulations based on a combination of the nonlinear filter and FCT
concepts (GM-MFC-F and LM-MFC-F). The GM-MFC-F and LM-MFC-F lead to better
mass conservation than the associated FCT methods using the BM as the high-order solu-
tion. The improved mass conservation results from the use of a high-order solution with
much smaller oscillations, thus requiring a simpler mass correction after the application of
the flux-corrected algorithm. The use of the local mass correction scheme emerges again as
the best among FCT-based formulations.
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From a mass conservation viewpoint, the nonlinear filter without clipping emerges as the
best approach. FCT methods, with a local mass correction scheme, using either the BM or
the nonlinear filter as the high-order solution, are also very attractive.

5.3. Numerical Damping

The diffusive properties of each formulation were evaluated through energy and peak
losses. The conventional definition of energy errors [25] was modified to eliminate the
impact of mass errors on energy loss (see the Appendix). This error measure was applied
to all tests since it does not require an analytical solution. Peak errors require a maximum
analytical concentration at each time step, so they were only evaluated for the first three tests.

The BM is by far the least diffusive method for all tests, with energy ratios very close to
unity in most tests (Fig. 7) and very small peak errors for all tests but the rotating cylinder
test (Fig. 8). The peak errors for the rotating cylinder arise from the oscillatory behavior
of the BM in the presence of sharp concentration gradients. All alternatives for oscillation
removal introduce numerical diffusion and peak loss.

Among the other formulations, the LM-MFC is the best for all tests on energy conservation
(Fig. 7). This method is also the best on peak maintenance, except for the CDF5 test, where
the MFC without any mass correction is slightly better (Fig. 8). The localized nature of
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FIG. 7. Maximum energy ratios: (a) rotating Gauss; (b) rotating cylinder; (c) CDF5; (d) Gauss in the Tagus
estuary.
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FIG. 8. Maximum peak errors: (a) rotating Gauss; (b) rotating cylinder; (c) CDF5.

the LM approach prevents the introduction of significant peak errors. The global mass
correction, however, introduces significant peak errors both applied to MFC and applied to
OFC.

Energy conservation is slightly better for the MFC than for the OFC method, both with
and without mass corrections (Fig. 7). In general, mass correction algorithms will improve
numerical damping by recovering lost mass. Global algorithms are less effective, as they
may redistribute mass to the incorrect location.

All filter formulations introduce small peak errors (Fig. 8). These methods introduce,
however, more numerical damping than FCTs for the sharp gradient tests. For the rotating
Gauss test, filter formulations rate second best, with energy ratios very close to that of the
LM-MFCs, as a result of the smooth concentration gradients. The relatively large numerical
damping of the filter in the Tagus test is justified by the coarse discretization of the plume
(�/�x ≈ 1.6). Indeed, the mass correction algorithm within the filter shifts mass from the
plume area to the adjacent nodes.

The analysis of the energy conservation and peak preservation showed that the algorithms
for oscillation removal introduce some numerical diffusion. The modified flux-corrected
formulation with local mass correction is the best choice, with minor peak loss and very
small numerical damping on all tests. The nonlinear filter preserves peaks well but introduces
significant numerical diffusion in the presence of sharp concentration gradients and for
coarsely discretized plumes.
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6. CONCLUSIONS

This paper presented a comparison of several flux-corrected transport methods and non-
linear filters for the elimination of numerical oscillations in finite element models. Within
FCT methods, new formulations were proposed targeting mass conservation and added ac-
curacy. All methods were implemented in a control-volume finite element ELM model [14]
and tested in a suite of cases covering both benchmark tests and an estuarine application.

The elimination of numerical oscillations in highly accurate methods will in general gen-
erate mass errors and numerical diffusion. Among the methods analyzed, none emerged as
the best for all tests and all error measures. The new modified flux-corrected method with a
local mass correction scheme is a good approach for oscillation removal and leads to a gener-
ally small loss of accuracy relative to the original base model. Nonlinear filters, implemented
both in a FCT concept and as a stand-alone formulation, provided comparatively good re-
sults. These formulations presented the best mass conservation properties and introduced
little numerical diffusion, except in the presence of sharp gradients. Oscillations are not
fully eliminated but are reduced by several orders of magnitude, down to negligible values.

Mass conservation was shown to be a major concern over the elimination of oscillations.
While this property is accounted for within the nonlinear filters, traditional FCT formulations
do not impose mass conservation. Explicitly recognizing the localized nature of numerical
oscillations and, consequently, of the mass errors due to their elimination, we proposed a
new method for local mass correction in FCTs. This method was shown to be superior to a
previously proposed global mass correction scheme.

Within the selected base model, CPU times do not provide a basis for distinction among
formulations. For the rotating Gauss test, CPU time increased less than 2% for all methods
relative to the base model. This increase in CPU time is significantly smaller than the ones
presented by Yost and Rao [27] for similar methods. The difference may be due to the use
of larger time steps in ELMs, which implies fewer calls to the filter or the FCT algorythms.

Since nonlinear filters offer some advantages over FCT methods, such as unrestricted
application to any problem or model, the choice of the algorithm should thus depend on
the specific problem to be solved. For problems where mass conservation is vital (e.g.,
within geochemical models, where the transfer between chemical components is strongly
controlled by mass), the nonlinear filter appears to be the best choice. In the presence
of sharp gradients, the local mass correction FCT is the best option, in particular when
numerical diffusion is a major concern.

APPENDIX: ERROR MEASURES

The comparison between the various methods is based on a suite of error measures that
addresses the mass conservation, the oscillatory behavior, and the numerical diffusion. The
definitions of the error measures used in the paper are given below. The superscripts num
and ex indicate numerical and exact solutions, respectively. The subscripts min and max
indicate minima and maxima, respectively.

1. The relative mass error, as a measure of the mass balance, is defined as

M(t) = 1

Minit

∫
�

Hcnum(x, y, t) d�, (20)

where Minit is the mass at time step 0.
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2. Dimensionless maximum negative concentrations, as a measure of the magnitude of
the oscillations, are defined as

Neg(t) = cnum
min (t)

cnum
max(t)

. (21)

3. The volume of negative concentrations, as a measure of the mass of the negative
concentrations, is defined as

NegVol(t) =
∫
�

H min(cnum, 0) d�. (22)

4. Peak error, as a measure of the reduction of the maximum concentrations, is

peak(t) = (
cex

max(t) − cnum
max(t)

)/
cex

max(t). (23)

5. The relative energy error is an integral measure of the numerical damping. In order to
eliminate the impact of mass errors in the energy errors, the definition of the energy errors
[25] was modified to

Em(t) =
∫ (

cnum

∫
cex d�∫

cnumd�

)2

d�

∫
(cex )2 d�

. (24)
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